Trending News

Get Your Daily Dose of Trending News

Science

Aided by A.I. Language Models, Google’s Robots Are Getting Smart

[ad_1]

A one-armed robot stood in front of a table. On the table sat three plastic figurines: a lion, a whale and a dinosaur.

An engineer gave the robot an instruction: “Pick up the extinct animal.”

The robot whirred for a moment, then its arm extended and its claw opened and descended. It grabbed the dinosaur.

Until very recently, this demonstration, which I witnessed during a podcast interview at Google’s robotics division in Mountain View, Calif., last week, would have been impossible. Robots weren’t able to reliably manipulate objects they had never seen before, and they certainly weren’t capable of making the logical leap from “extinct animal” to “plastic dinosaur.”

But a quiet revolution is underway in robotics, one that piggybacks on recent advances in so-called large language models — the same type of artificial intelligence system that powers ChatGPT, Bard and other chatbots.

Google has recently begun plugging state-of-the-art language models into its robots, giving them the equivalent of artificial brains. The secretive project has made the robots far smarter and given them new powers of understanding and problem-solving.

I got a glimpse of that progress during a private demonstration of Google’s latest robotics model, called RT-2. The model, which is being unveiled on Friday, amounts to a first step toward what Google executives described as a major leap in the way robots are built and programmed.

“We’ve had to reconsider our entire research program as a result of this change,” said Vincent Vanhoucke, Google DeepMind’s head of robotics. “A lot of the things that we were working on before have been entirely invalidated.”

Robots still fall short of human-level dexterity and fail at some basic tasks, but Google’s use of A.I. language models to give robots new skills of reasoning and improvisation represents a promising breakthrough, said Ken Goldberg, a robotics professor at the University of California, Berkeley.

“What’s very impressive is how it links semantics with robots,” he said. “That’s very exciting for robotics.”

To understand the magnitude of this, it helps to know a little about how robots have conventionally been built.

For years, the way engineers at Google and other companies trained robots to do a mechanical task — flipping a burger, for example — was by programming them with a specific list of instructions. (Lower the spatula 6.5 inches, slide it forward until it encounters resistance, raise it 4.2 inches, rotate it 180 degrees, and so on.) Robots would then practice the task again and again, with engineers tweaking the instructions each time until they got it right.

This approach worked for certain, limited uses. But training robots this way is slow and labor-intensive. It requires collecting lots of data from real-world tests. And if you wanted to teach a robot to do something new — to flip a pancake instead of a burger, say — you usually had to reprogram it from scratch.

Google’s new robotics model, RT-2, can do just that. It’s what the company calls a “vision-language-action” model, or an A.I. system that has the ability not just to see and analyze the world around it, but to tell a robot how to move.

It does so by translating the robot’s movements into a series of numbers — a process called tokenizing — and incorporating those tokens into the same training data as the language model. Eventually, just as ChatGPT or Bard learns to guess what words should come next in a poem or a history essay, RT-2 can learn to guess how a robot’s arm should move to pick up a ball or throw an empty soda can into the recycling bin.

“In other words, this model can learn to speak robot,” Mr. Hausman said.

In an hourlong demonstration, which took place in a Google office kitchen littered with objects from a dollar store, my podcast co-host and I saw RT-2 perform a number of impressive tasks. One was successfully following complex instructions like “move the Volkswagen to the German flag,” which RT-2 did by finding and snagging a model VW Bus and setting it down on a miniature German flag several feet away.

It also proved capable of following instructions in languages other than English, and even making abstract connections between related concepts. Once, when I wanted RT-2 to pick up a soccer ball, I instructed it to “pick up Lionel Messi.” RT-2 got it right on the first try.

The robot wasn’t perfect. It incorrectly identified the flavor of a can of LaCroix placed on the table in front of it. (The can was lemon; RT-2 guessed orange.) Another time, when it was asked what kind of fruit was on a table, the robot simply answered, “White.” (It was a banana.) A Google spokeswoman said the robot had used a cached answer to a previous tester’s question because its Wi-Fi had briefly gone out.

But Mr. Goldberg, the Berkeley robotics professor, said those risks were still remote.

“We’re not talking about letting these things run loose,” he said. “In these lab environments, they’re just trying to push some objects around on a table.”

Google, for its part, said RT-2 was equipped with plenty of safety features. In addition to a big red button on the back of every robot — which stops the robot in its tracks when pressed — the system uses sensors to avoid bumping into people or objects.

The A.I. software built into RT-2 has its own safeguards, which it can use to prevent the robot from doing anything harmful. One benign example: Google’s robots can be trained not to pick up containers with water in them, because water can damage their hardware if it spills.

If you’re the kind of person who worries about A.I. going rogue — and Hollywood has given us plenty of reasons to fear that scenario, from the original “Terminator” to last year’s “M3gan” — the idea of making robots that can reason, plan and improvise on the fly probably strikes you as a terrible idea.

But at Google, it’s the kind of idea researchers are celebrating. After years in the wilderness, hardware robots are back — and they have their chatbot brains to thank.

[ad_2]

Sahred From Source link Science

Leave a Reply

Your email address will not be published. Required fields are marked *