Trending News

Get Your Daily Dose of Trending News

Science

Zeta Is Downgraded on the Way to the Gulf Coast

[ad_1]

Hurricane Zeta, which brought torrential rains as it slammed into the Yucatán Peninsula of Mexico, was downgraded to a tropical storm on Tuesday morning. It offered further evidence that this hurricane season has not only been extremely active, but also extremely wet.

Zeta, which late Monday hit the Yucatán’s northeastern coast as a Category 1 hurricane, is the 27th named storm of a season that is far from over: Storms could continue to form for another five weeks, and possibly longer. The season is one shy of the record set in 2005, when 28 storms grew strong enough to warrant names.

According to a 8 a.m. Eastern time advisory from the National Hurricane Center, Zeta was located over the northern Yucatán Peninsula and was moving toward the northwest with winds around 70 miles per hour.

The storm, the center said, was expected to turn north Tuesday night and move over the central Gulf of Mexico on Wednesday, making landfall along the northern Gulf States late Wednesday or Wednesday night.

Zeta was forecast to restrengthen and become a hurricane again later on Tuesday. The storm may be at or near hurricane strength when it approaches the northern Gulf Coast late Wednesday. A hurricane warning was in affect Tuesday morning for Morgan City, La., to the Mississippi and Alabama border, including metropolitan New Orleans. Up to six inches of rain was expected across these areas and points north.

If the forecasts hold, Zeta will continue a pattern that has been playing out this year where much of the damage from storms has come not from wind but from water. And that destructiveness is linked to climate change.

Of the 27 named storms so far in 2020, only four have been major hurricanes, rated Category 3 or higher. (In 2005 there were seven major hurricanes, also a record.) Seventeen of 2020’s storms never got above tropical storm strength, with winds below 73 miles per hour, but heavy rains accompanied many of them, starting with Tropical Storm Bertha, which brought 14 inches of rain to parts of South Florida in late May.

All tropical cyclones pick up moisture as they develop and travel across the ocean. But global warming has raised average air temperatures, and warmer air holds more moisture. Studies of specific storms, including Hurricane Harvey, which brought four feet or more of rain to the Houston area in August 2017, have found them to be affected by human-induced climate change.

But greater moisture is only one way in which storms can be wetter. Global warming also appears to be causing some storms to slow down and stall so that over a given time they drop more rain over a smaller area.

Zeta was traveling northwest at 14 miles per hour Tuesday morning, and it was expected to speed up as it approached the United States.

Researchers increasingly see a link between stalling of hurricanes and climate change. Rapid warming in the Arctic has reduced the difference in temperature between that region and the tropics, leading to a weakening and slowing of the jet stream and related winds that drive hurricanes’ forward movement.

Hurricanes also sometimes meander, Dr. Kossin said. Hurricane Harvey moved back and forth over the area, increasing the deluge. Sally was heading due west, parallel to the coast, on Monday when it made a sudden right-angled turn to the north early Tuesday.

Such movements may also be linked to slowing atmospheric circulation, Dr. Kossin said. “You won’t really get meandering until you get a slow storm,” he said. “They don’t go zipping around like go-karts.”

While Sally’s winds were not as intense as the strongest hurricanes — maximum sustained speeds early Wednesday were about 105 m.p.h., about 50 percent slower than a Category 5 storm — by lingering for longer, the storm may also have boosted storm surge, the wind-driven buildup of water that can quickly flood coastal areas, often with devastating results.

But storm surge can be influenced by many other factors, including the timing of tides and the shallowness of a bay or another body of water. In this case, Sally’s slow speed “contributed more to the extreme rainfall flooding than to the surge flooding,” said Rick Luettich, a professor at the University of North Carolina and a principal developer of the leading surge model used by forecasters.

Dr. Luettich said the storm’s surge was close to projections of about five feet. But another characteristic of some hurricanes that is linked to warmer oceans, the rapid strengthening of a storm before landfall, “gave the water a bigger push” than earlier forecasts called for, he said.

[ad_2]

Sahred From Source link Science

Leave a Reply

Your email address will not be published. Required fields are marked *